Измерение хпк. Химическое потребление кислорода

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION


МЕЖГОСУДАРСТВЕННЫЙ

СТАНДАРТ

ВОДА

Метод определения химического потребления

кислорода (ISO 15705:2002, NEQ)

Издание официальное

Стенда ртинформ 2014

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения. обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «Протектор» совместно с группой компаний «Люмэкс»

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Техническим комитетом по стандартизации ТК 343 «Качество воды»)

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 15 ноября 2012 г. N9 42)

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны

по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа

Агентство «Армстаидарт»

Казахстан

Госстандарт Республики Казахстан

Беларусь

Госстандарт Республики Беларусь

Киргизия

Кыргыэстандврт

Молдова-стандарт

Росстандарг

Узбекистан

Узстандарт

4 Настоящий стандарт соответствует международному стандарту ISO 15705:2002 Water quality - Determination of the chemical oxygen demand index (ST-COD) - Small-scale sealed-tube method (Качество воды. Определение индекса химического потребления кислорода. Маломасштабный метод герметичных пробирок).

Степень соответствия - неэквивалентная (NEQ).

Настоящий стандарт подготовлен на основе применения ГОСТ Р 52708-2007 «Вода. Метод определения химического потребления кислорода»

5 Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. № 1618-ст межгосударственный стандарт ГОСТ 31859-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется е ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок - е ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано е ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также е информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии е сети Интернет

© Стандартинформ, 2014

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен. тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Метод определения химического потребления кислорода Water. Method (or determination of chemical oxygen demand

Дата введения - 2014-01-01

1 Область применения

Настоящий стандарт устанавливает метод определения химического потребления кислорода (далее - ХПК) в воде с использованием фотометрии. Метод распространяется на все типы воды (питьевые. природные, сточные) в диапазоне значений ХПКот 10 до 800 мгО/дм 3 . Метод может быть использован для анализа проб воды с более высокими значениями ХПК при условии их разбавления, но не более чем в 100 раз.

К мешающим факторам при проведении определения относят наличие в пробе воды хлоридов при их содержании свыше 1000 мг/дм 3 и марганца (II) при его содержании свыше 50 мгУдм 3 . Мешающие факторы устраняют разбавлением пробы воды.

8 настоящем стандарте ислользоеаны нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских аод, льда и атмосферных осадков

ГОСТ 177G-74 (ИС0 1042-83. ИСО4788-80) Посуда мерная лабораторная стеклянная. Цилиндры. мензурки, колбы, пробирки. Общие технические условия

ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия ГОСТ 4220-75 Реактивы. Калий двухромовокислый. Технические условия ГОСТ ИСО 5725-6-2003 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике*

Г ОСТ 6709-72 Вода дистиллированная. Т ехнические условия ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия ГОСТ ИСО/МЭК17025-2009 Общие требования к компетентности испытательных и калибровочных лабораторий

Г ОСТ 24104-2001 Весы лабораторные. Общие технические требования * *

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29169-91 (ИСО 648-77) Посуда лабораторная стеклянная. Пипетки с одной отметкой

* В Российской Федерации действует ГОСТ Р ИСО 5725-6-2002 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике*.

’* 8 Российской Федерации действует ГОСТ Р 53228-2008 «Весы неавтоматического действий. Часть 1. Метрологические и технические требования. Испытания*.

Издание официальное

ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 30813-2002 Вода и водоподготовка. Термины и определения ГОСТ 31861-2012 Вода. Общие требования к отбору проб ГОСТ 31862-2012 Вода литьевая. Отбору проб

Примечание - При пользовании настоящим стандартом целесообразно проверить дейстаие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты » за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, а котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 30813 и следующий термин с соответствующим определением:

химическое потребление кислорода: ХПК: Количество кислорода, потребляемое при химическом окислении содержащихся в воде органических и неорганических веществ под действием различных окислителей.

[ГОСТ 27065-86. статья 29)


4 Сущность метода

Сущность метода заключается в обработке пробы воды серной кислотой и бихроматом калия при заданной температуре в присутствии сульфата серебра - катализатора окисления, и сульфата ртути (II). используемого для снижения влияния хлоридов, и определении значений ХПК в заданном диапазоне концентоаций путем измерения оптической плотности исследуемого раствора при заданном значении длины волны с использованием градуировочной зависимости оптической плотности раствора от значения ХПК.

Значения ХПК в диапазоне от 10 до 160 мгО/дм 3 включительно определяют путем измерения оптической плотности раствора при длине волны (440 ± 20) нм.

Значения ХПК в диапазоне от 80 до 800 мгО/дм 3 включительно определяют путем измерения оптической плотности раствора при длине волны (600 ± 20) нм.

Значения ХПК в диапазоне от 80 до 160 мгО/дм 3 включительно допускается определять как при длине волны (440 ± 20) нм. так и при длине волны (600 ± 20) нм.

Требования безопасности при проведении измерений приведены в приложении А.

5 Средства измерений, вспомогательное оборудование, реактивы, материалы

Фотометр, спектрофотометр или фотометрический анализатор (далее - анализатор), снабженный адаптером для измерений оптической плотности воды и водных растворов, непосредственно находящихся в реакционных сосудах, в диапазоне длин волн от 400 до 700 нм.

Реакционные сосуды из термостойкого стекла (пробирки с завинчивающимися крышками вмести* мостью от 10 до 15 см 3), предназначенные для обработки проб воды и измерений оптической плотности воды и водных растворов.

Нагревательный блок (термореактор), предназначенный для нагревания реакционных сосудов, обеспечивающий поддержание температуры содержимого реакционных сосудов (150 ± 5) в С.

Перемешивающее устройство, например магнитная мешалка, эксикатор или ультразвуковая ванна.

8есы лабораторные по ГОСТ 24104 высокого или специального класса точности с ценой деления (дискретностью отсчета) 0.1 мг и наибольшим пределом взвешивания 220 г.

Колбы мерные поГОСТ 1770 2-го класса точности вместимостью 25.50.1000 см 3 .

Цилиндры мерные ло ГОСТ 1770 2-го класса точности.

Стаканы химические термостойкие ло Г ОСТ 25336 вместимостью 1000 см 3 .

Пипетки градуированные 2-го класса точности ло ГОСТ 29227 или пипетки с одной отметкой 2-го класса точности по ГОСТ 29169. или дозаторы пипеточные с допускаемой предельной погрешностью дозирования *5 %.

Государствеиный (межгосударственный) стандартный образец (ГСО) бихроматной окисляемосги с погрешностью аттестованного значения не более ±2%.

Вода дистиллированная ло ГОСТ 6709.

Кислота серная ло ГОСТ 4204. х. ч.

Сульфат ртути (II). х. ч. или ч. д. а.

Сульфат серебра, к. ч. или ч. д. а.

Калий двухромовокислый (бихромат калия) поГОСТ 4220. х. ч. или стандарт-титр (фиксанал).

Бумага фильтровальная лабораторная по ГОСТ 12026.

6 Отбор проб

пробы воды отбирают ло ГОСТ 31861, ГОСТ 31862. ГОСТ 17.1.5.05.

Для отбора, транспортирования и хранения проб воды используют емкости из стекла или полимерных материалов с навинчивающейся или пришлифованной пробкой. Емкости из полимерных материалов используют только для хранения замороженных проб воды при температуре минус 20 в С. Объем отбираемой пробы воды - не менее 100 см 3 .

Отбор проб проводят в день выполнения анализа. Если пробы воды хранят до проведения анализа. то их подкисляют до pH меньше 2 разбавленной серной кислотой (см. 7.3.3). добавляя 10 см 3 кислоты в расчете на 1000 см 3 пробы. При этом пробы воды хранят при температуре от 2 в С до8 °С не более 5 сут е защищенном от света месте.

Срок хранения замороженных до минус 20 °С проб воды - не более 1 мес.

Если проба содержит осадок, видимый невооруженным глазом, взвесь или не растворенные органические вещества, например жиры, то перед отбором аликвотной порции пробы воды для обеспечения однородности, пробу интенсивно перемешивают, используя любое перемешивающее устройство (например, магнитную мешалку, экстрактор или ультразвуковую ванну).

7 Порядок подготовки к проведению измерений

7.1 Подготовку анализатора к работе проводят в соответствии с руководством (инструкцией) по эксплуатации.

7.2 Подготовка реакционных сосудов

Из новой партии реакционных сосудов отбирают методом случайной выборки от 5 % до 10 % всего количества реакционных сосудов, но не менее трех штук. В каждый сосуд помещают по 5 см 3 дистиллированной воды. Реакционный сосуд закрывают крышкой и проверяют на отсутствие видимых невооруженным глазом пузырьков воздуха в дистиллированной воде. При наличии пузырьков их удаляют легким постукиванием по стенке реакционного сосуда. Измеряют оптическую плотность дистиллированной воды в реакционном сосуде при длине волны 440 или 600 нм в зависимости от предполагаемого диапазона измерения значений ХПК (см. раздел 4).

Если измеренные значения оптической плотности дистиллированной воды в каждом реакционном сосуде отличаются не более чем на 0,01 единицы оптической плотности, то всю партию реакционных сосудов используют для проведения измерений ХПК.

Есл и измерен ны е значения оптической плотности дистиллированной воды в реакционных сосудах отличаются более чем на 0.01 единицы оптической плотности, то проводят сплошной контроль всей партии реакционных сосудов, отбирая для проведения измерений ХПК те из них. которые по значению оптической плотности отличаются друг от друга не более чем на 0.01 единицы оптической плотности.

Последующие проверки пригодности реакционных сосудов для измерений проводят с периодичностью не реже одного раза в месяц аналогично проверке новой партии реакционных сосудов.

7.3 Приготовление вспомогательных растворов

7.3.1 Раствор бихромата калия для измерения значений ХПК в диапазоне от 10 до 160 мгО/дм 3

Бихромат калия высушивают при (105 ± 5) °С а течение 2 ч. Навеску 4,90 г высушенного бихромата калия растворяют в дистиллированной воде в мерной колбе вместимостью 1000 см 3 и доводят объем раствора в колбе дистиллированной водой до метки. Молярная концентрация эквивалента бихромата калия составляет 0.1 моль/дм 3 .

7.3.2 Раствор бихромата калия для измерения значений ХПК в диапазоне от 80 до 800 мг О/дм 3

Бихромат калия высушивают при (105 ± 5) °С в течение 2 ч. Навеску 24.52 г высушенного бихромата калия, растворяют в дистиллированной воде в мерной колбе вместимостью 1000 см 3 и доводят объем раствора в колбе дистиллированной водой до метки. Молярная концентрация эквивалента бихромата калия составляет 0.5 моль/дм 3 .

Допускается готовить раствор бихромата калия из стандарт-титра по прилагаемой к нему инструкции.

Срок хранения раствора - не более 6 мес.

7.3.3 Раствор серной кислоты молярной концентрации 4 моль/дм 3

В стеклянный стакан вместимостью 1000 см 3 помещают около 700 см 3 дистиллированной воды, осторожно добавляют при перемешивании 220 см 3 концентрированной серной кислоты, охлаждают и доводят объем раствора в стакане дистиллированной водой до метки.

7.3.4 Раствор серной кислоты молярной концентрации 1,8 моль/дм 3

В стеклянный стакан вместимостью 1000 см 3 помещают 180 см 3 дистиллированной воды, осторожно добавляют при перемешивании 20 см 3 концентрированной серной кислоты.

Срок хранения раствора - не более 12 мес.

7.3.5 Раствор сульфата ртути (II) в серной кислоте

Растворяют в стеклянной емкости 50 г сульфата ртути (II) в 200 см 3 раствора серной кислоты (см. 7.3.4). Срок хранения раствора в стеклянной емкости - не более 12 мес.

7.3.6 Раствор сульфата серебра в серной кислоте

Растворяют в стеклянной емкости 3.25 г сульфата серебра в 250 см 3 концентрированной серной кислоты. Раствор перемешивают и оставляют в защищенном от света месте на 12 ч при комнатной температуре. Затем раствор вновь интенсивно перемешивают до полного растворения сульфата серебра.

Раствор хранят в емкости из темного стекла в условиях, исключающих воздействие прямых солнечных лучей, не более 12 мес.

7.3.7 Реагент для заполнения реакционных сосудов при измерении значений ХПК в диапазоне от 10 до 160 мгО/дм 3

Перед началом работы в реакционный сосуд пипеткой или дозатором вносят 0.5 см 3 раствора бихромата калия (см. 7.3.1). осторожно добавляют 2.5 см 3 раствора сульфата серебра (см. 7.3.6), затем 0.2 см 3 раствора сульфата ртути (II) (см. 7.3.5). Допускается добавлять 0.05 г сухой соли сульфата ртути (II) вместо раствора сульфата ртути (II). Смесь осторожно перемешивают вращательными движениями или с использованием любого перемешивающего устройства, затем закрывают сосуд крышкой. Реакционные сосуды, заполненные реагентом, хранят в светонепроницаемой таре в защищенном от света месте при температуре от 2 *С до 8 ‘С.-

Срок хранения заполненного реагентом реакционного сосуда - не более 12 мес. Содержимое реакционного сосуда перед применением перемешивают.

7.3.8 Реагент для заполнения реакционных сосудов при измерении значений ХПК в диапазоне от 80 до 800 мгО/дм 3

Реагент готовят по 7.3.7, используя раствор бихромата калия (см. 7.3.2).

Условия и срок хранения заполненного реагентом реакционного сосуда по 7.3.7. Содержимое реакционного сосуда перед применением перемешивают.

7.3.9 При использовании реагентов (см. 7.3.7 и 7.3.8) допускается увеличивать объемы растворов бихромата калия и сульфата серебра в 2 раза при одновременном увеличении объема аликвотной порции пробы воды до 4 см 3 (см. 8.1) при условии, что после введения пробы воды свободное пространство в реакционном сосуде над жидкостью составляет не менее 10 %-15 % высоты сосуда.

7.4 Приготовление градуировочных растворов

7.4.1 Приготовление основного раствора со значением ХПК1000 мгО/дм 3

Основной раствор для измерения ХПК готовят из Г СО бихроматной окисляв мости в соответствии с инструкцией по применению. Например при использовании ГСО бихроматной окисляемости с аттестованным значением ХПК 10000 мгО/дм 3 . в мерную колбу вместимостью 50 см 3 вносят мерной пипеткой 5 см 3 ГСО бихроматной окисляемости и доводят объем в колбе дистиллированной водой до метки. Раствор стабилен в течение 1 мес при хранении в колбе с притертой пробкой при температуре от 2 °С до 8 °С.

7.4.2 Приготовление градуировочных растворов для диапазона значений ХПК от 10 до 160 мгО/дм 3

8 мерные колбы вместимостью 50 см 3 мерными пипетками вносят 0.5; 1.0: 2.0: 3.5: 5.0; 8.0 см 3 основного раствора (см. 7.4.1) и доводят объемы в колбах дистиллированной водой до метки. Значения ХПК приготовленных растворов составляют соответственно 10; 20:40; 70:100; 160 мгО/дм 3 . Растворы используют вдень приготовления.

7.4.3 Приготовление градуировочных растворов для диапазона значений ХПК от 80 до 800 мгО/дм 3

6 мерные колбы вместимостью 25 см 3 мерными пипетками вносят 2:5; 10; 20см 3 основного раствора (см. 7.4.1) и доводят объемы в колбах дистиллированной водой до метки. Значения ХПК приготовленных растворов составляют соответственно 80:200; 400; 800 мгО/дм 3 .

Растворы используют в день приготовления.

7.5 Градуировка анализатора

Градуировку анализатора проводят в соответствии с руководством (инструкцией) по эксплуатации с использованием градуировочных растворов (см. 7.4.2 и 7.4.3)в зависимости от диапазона измеряемых значений ХПК. В качестве нулевой пробы используют дистиллированную воду. Градуировочные растворы и нулевую пробу воды подготавливают к измерениям аналогично анализируемым пробам (см. 8.5-8.7), измеряют значения оптической плотности растворов в реакционных сосудах при длинах волн (см. раздел 4) и устанавливают градуировочную зависимость оптической плотности растворов от значения ХПК (градуировочная характеристика), используя программное обеспечение к анализатору и/или программное обеспечение, предназначенное для обработки градуировочных зависимостей. Гра-дуироеочную характеристику признают стабильной, если абсолютное значение коэффициента корреляции, установленное программным обеспечением, не менее 0.98. Если коэффициент корреляции менее 0.98. градуировку анализатора повторяют.

Контроль стабильности градуировочной характеристики проводят не реже одного раза в три месяца в соответствии с периодичностью, установленной в Руководстве по качеству лаборатории, с использованием не менее двух заново приготовленных градуировочных растворов с различными значениями ХПК (см. 7.4.2 и 7.4.3). Контроль стабильности градуировочной характеристики проводят также при смене партии реагента.

8 Порядок проведения измерений

8.1 Одновременно анализируют не менее двух аликвотных порций пробы воды (параллельные пробы). Объем отбираемой аликвотной порции пробы воды - 2 см 3 . Допускается увеличение объема пробы воды до 4 см 3 при соблюдении условий, указанных в 7.3.9.

8.2 Заполняют реакционные сосуды реагентом (см. 7.3.7 или 7.3.8).

Если предполагаемое значение ХПК находится в диапазоне от 80 до 160 мгО/дм 3 , то допускается использовать реагент как по 7.3.7, так и по 7.3.8.

8.3 Проводят визуальный осмотр реакционных сосудов и их содержимого. При обнаружении в сосуде трещин, повреждений любого типа или признаков зеленой окраски раствора, реакционный сосуд не используют.

8.4 Включают нагревательный блок, нагревают его до 150 в С и выдерживают при этой температуре не менее 10 мин.

8.5 Снимают крышку с реакционного сосуда и сразу же вносят в него дозатором или мерной пипеткой пробу воды, при необходимости предварительно тщательно перемешанной (см. раздел 6).

8.6 На реакционный сосуд плотно навинчивают крышку и перемешивают его содержимое, осторожно переворачивая несколько раз. Вытирают внешнюю поверхность реакционного сосуда фильтровальной бумагой. Помещают реакционный сосуд в нагревательный блок и выдерживают в течение (120 ± 10)мин.

8.7 Осторожно, например специальными захватами, вынимают реакционные сосуды из нагревательного блока и охлаждают при комнатной температуре до температуры не выше 60 е С. Перемешивают содержимое, переворачивая реакционные сосуды. Затем охлаждают реакционные сосуды до комнатной температуры. Реакционные сосуды, в которых произошло визуально заметное уменьшение объема содержимого, для измерений не используют. Анализ пробы воды в этом случае повторяют (см. 8.1 -8.6).

8.8 Если раствор после охлаждения прозрачен, то измеряют оптическую плотность пробы воды при рабочей /шине волны 440 нм, используя реагент (см. 7.3.7). или при 600 нм. используя реагент (см. 7.3.8).

Если раствор мутный, то ему дают отстояться, затем измеряют его оптическую плотность как описано выше. Если после отстаивания раствор остается мутным, то анализ пробы воды повторяют, предварительно разбавив ее дистиллированной водой.

9 Правила обработки результатов измерений

9.1 По значению оптической плотности раствора, измеренному по 8.8. для каждой аликвотной порции пробы воды (см. 8.1), используя градуировочную зависимость (см. 7.5), определяют значение ХПК.

Если значение ХПК выходит за пределы диапазона построения градуировочной зависимости, то испытания по разделу 8 повторяют либо разбавив пробу дистиллированной водой, либо используя реагент для работы с другим диапазоном значений ХПК.

Если проба воды подвергалась в процессе измерений разбавлению, то полученное значение ХПК умножают на коэффициент разбавления пробы воды К 0 . который вычисляют по формуле


где V - объем пробы воды после разбавления, см 3:

V/J - объем аликвотной порции пробы воды до разбавления (см. 8.1). см 3 .

9.2 За результат измерения принимают среднеарифметическое значение не менее двух параллельных определений ХПК пробы воды X. мгО/дм 3 (см. 9.1). при выполнении условия

гдеХ Л1ах - максимальное значение ХПК из двух параллельных определений (см. 9.1), мгО/дм 3:

X mtn - минимальное значение ХПК из двух параллельных определений (см. 9.1). мгО/дм 3: г - относительное значение предела повторяемости по таблице 1. %.

9.3 При невыполнении условия (2) методы проверки приемлемости результатов параллельных определений и установления окончательного результата измерений осуществляют в соответствии с требованиями ГОСТ ИСО 5725-6 (пункт 5.2).

10 Метрологические характеристики

Метод обеспечивает получение результатов измерения с метрологическими характеристиками, не превышающими значений, приведенных в таблице 1 при доверительной вероятности Р - 0.95.

Таблице 1

Диапазон измеряемых значений ХПК, мгО/дм 3

Предел повторяемости (отиосительное значение допускаемого расхождения между двумя результатами параллельных определений при Р -0.95) г. Ч

Предел воспроизводимости (относительное значение допускаемого расхождения между деумя результатами определений, полученными а условная воспроизводимости при Р - 0.95) R. %

Показатель точности (границы* допускаемой относительной погрешности при еероагности Р 0,95) х А.%

От 10 ДО 50 включ. Се. 50 я 200

* Установленные численные значения границ допускаемой относительной погрешности соответствуют чис-

ленным значениям расширенной неопределенности к « 2.

(в относительных единицах) при коэффициенте охвата

11 Правила оформления результатов измерений

Результаты измерений регистрируют в протоколе испытаний согласно ГОСТ ИСО/МЭК 17025. Результат измерения представляют в виде

Х± д. мгО/дм 3 . (3)

где X - значение ХЛК. определяемое по 9.2 или 9.3. мгО/дм 3:

л- границы абсолютной погрешности измерений значения ХПК, мгО/дм 3 .при доверительной вероятности Р - 0,95.

Значения д вычисляют по формуле

где 8 - границы допускаемой относительной погрешности результатов измерения значения ХПК при доверительной вероятности Р = 0.95 по таблице 1. %.

Допускается результат измерения представлять в виде Х± ^ e6 , мгО/дм 3 . при доверительной вероятности Р = 0.95, при условии \ аб < Л где д„ аб - значение показателя точности измерений (доверительные границы абсолютной погрешности измерений). мгО/дм 3 , установленное при реализации настоящего метода в лаборатории и обеспечиваемое контролем стабильности результатов измерений.

12 Контроль показателей качества результатов измерений

12.1 Контроль стабильности результатов измерений в лаборатории предусматривает контроль стабильности среднеквадратического отклонения повторяемости, контроль стабильности стандартного отклонения промежуточной прецизионности и контроль стабильности показателей правильности рутинного анализа по ГОСТ ИСО 5725-6 (раздел 6) с использованием ГСО бихроматной окисляемости.

12.2 Проверку совместимости результатов измерений, полученных в двух лабораториях, проводят по ГОСТ ИСО 5725-6 (пункт 5.3). Результаты считают совместимыми при выполнении условия

*а01Х ср Я, (5)

где X™а* - максимальное значение из двух результатов измерений ХПК. полученных в двух лабораториях по 9.2 или 9.3. мгО/дм 3 ;

Минимальное значение из двух результатов измерений ХПК. полученных в двух лабораториях по 9.2 или 9.3, мгО/дм 3 ;

Х ср - среднеарифметическое значение результатов измерений, полученных в двух лабораториях. мгО/дм 3:

R - относительное значение предела воспроизводимости по таблице 1, %.

При невыполнении условия (5) для проверки прецизионности в условиях воспроизводимости каждая лаборатория должна выполнить процедуры согласно ГОСТ ИСО 5725-6 (пункты 5.2.2:5.3.2.2).

Приложение А {обязательное)

Требования безопасности

А.1 Метод нестоящего стандарте предусматривает использование горячих концентрированных растворов серной кислоты и бихромата калия. Персонал должен пройти инструктаж по технике безопасности при работе с кислотой и использовать защитную одежду и теплоизолирующие перчатки. Перед нагревательным блоком устанаали-ваютзащитный экран.

А.2 При подготовке проб возможно выделение токсичных газов (сероводород, циа но во до род). Все операции необходимо проводить а вытяжном шкафу.

А.З Содержимое реакционных сосудов включает токсичные сульфаты ртути (II) и серебра, а также бихромат калия. Утилизацию содержимого реакционных сосудов проводят с соблюдением правил обращения с токсичными отходами.

А.4 Реакционные сосуды, а которых полностью израсходован бихромат калия, могут содержать лары ртути. Такие сосуды следует открывать только в вытяжном шкафу.

A.S 8 закрытых крышками реакционных сосудах а процессе нагревания повышается давление, поэтому они должны быть тщательно осмотрены перед использованием. Во избежание взрывов сосуды, имеющие трещины, сколы и другие дефекты, не используют.

А.6 До полного охлаждения содержимого реакционных сосудов до комнатной температуры запрещается отвинчивать крышки сосудов во избежание выброса содержимого.

УДК 663.6:006.354 МКС 13.060.50 ТН ВЭД 220100000 NEQ

Ключевые слова: вода, качество воды, химическое потребление кислорода, бихроматная окисляе-мость. метод фотометрии

Редактор Д.М. Кульчишшй Технический редактор В.Н. Прусолоаа Корректор М.В. Бучмая Компьютерная верстка А.Н ЗолотареаоО

Сдано а набор 11.022014. Подписано е печать 16.02.2014. Формат 60*84Гарнитура Ариап. Уел. печ. п. 1.40. Уч.*иэд. п. 1.15. Тираж 1S8 экэ. Зак 246.

Издана и отпечатано во ФГУП «СТАНДАРТИНФОРМо. 12399S Москва, Гранатный пер.. 4.

Теоретическое значение химического потребления кислорода. Практически применяемые методы определения ХПК. Недостатки перманганатного окисления. Бихроматный арбитражный метод. Применение фотометрического метода при малых концентрациях органических веществ.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Х имическое потребление кислорода (ХПК)

Теоретическое ХПК

Теоретическим значением ХПК называют количество кислорода (или окислителя в расчете на кислород) в мг/л, необходимое для полного окисления содержащихся в пробе органических веществ, при котором углерод, водород, сера, фосфор и другие элементы (кроме азота), если они присутствуют в органическом веществе, окисляются до СО 2 , Н 2 О, Р 2 0 5 , S0 3 , а азот превращается в аммонийную соль. При этом кислород,. входивший в состав, окисляемых органических веществ, участвует в процессе окисления; а водород этих соединений отдает по 3 атома на каждый атом азота при образовании аммонийной соли.

Практически применяемые методы определения ХПК дают результаты, очень близкие к ХПК теор , но могут несколько отклонить ту или иную сторону. Так, метод, при котором определяется потеря кислорода при сжигании высушенной пробы в токе кислорода, приводит к образованию оксида азота, и получаемое значение ХПК несколько выше ХПК теор . В методе сухого сжигания, при котором углерод превращается в СО и последний определяют ИК-спектрометрией, выделяется азот в свободном состоянии, и получаемая величина ХПК, будет также несколько выше ХПК теор . Если окисление органических веществ прошло не полностью, то результат, естественно, получится заниженным. Кроме того, при любом методе определения ХПК вместе с органическими веществами окисляются и неорганические восстановители, если они были в пробе. Содержание неорганических восстановителей в пробе определяют тогда отдельно специальными методами и результаты этих определений вычитают из найденного значения ХПК.

Для определения ХПК имеются «сухие» методы, в которых органические вещества пробы сжигаются в токе кислорода или СО 2 . Эти методы были уже упомянуты, они приводят к результатам, близким к теоретическим, но необходимые приборы, пока не выпускаемые нашей промышленностью. Хорошие результаты, дает также метод, в котором органические вещества окисляю персульфатом аммония. Это «мокрый» метод. Результаты полу чаются несколько повышенными вследствие окисления азота для нитрат-ионов.

Применявшийся раньше метод перманганатного окисления совершенно не пригоден для анализа сточных вод (в анализе при родных вод его еще используют). Перманганат-- недостаточно сильный окислитель: окисление органических веществ проходи неполно и многие из них совсем не окисляются. Кроме того, при кипячении растворов, содержащих избыток перманганата, последний в значительной мере разлагается с образованием диоксид марганца и кислорода. Это разложение происходит как в кислой, так и в щелочной среде. Выпадающий диоксид марганца каталитически ускоряет процесс. Количество образующегося осадка раз лично в зависимости от условий и состава пробы. Поправка н холостой опыт здесь невозможна, так как при проведении холостого определения осадок диоксида марганца обычно совсем и выпадает.

Бихроматный арбитражный метод определения ХПК

Анализировать можно предварительно профильтрованную пробу и всю пробу вместе с присутствующим в ней осадком (в зависимости от поставленной цели). Если анализ пробы должен показать эффективность применяемого метода очистки сточной воды от органических веществ (полнота последующего осветления воды в отстойнике не должна учитываться), то проба пере, анализом обязательно должна быть профильтрована. С другой стороны, если анализируется прошедшая через отстойник очищенная сточная вода непосредственно перед спуском ее в водоем то возникает часто необходимость анализа воды вместе с оставшимися в ней частицами осадка. В последнем случае проба сточной воды должна быть гомогенизирована. При фильтровании пробы через бумажный фильтр надо избегать возможного влияния бумаги фильтра. Фильтр надо предварительно промыть горячей водой и, проводя фильтрование, отбросить первую порцию (200--250 мл) фильтрата. Нельзя, однако, фильтровать сточную воду, содержащую вещества, которые могут улетучиваться во время фильтрования или окисляться кислородом воздуха. В таких случаях фильтрование заменяют продолжительным отстаиванием сточной воды и для анализа отбирают пипеткой верхний прозрачный слой.

Сущность метода. Органические вещества окисляют бихроматом калия в 18 н. (разбавление 1:1) серной кислоте. Бихромат при этом восстанавливается согласно уравнению

Окисление органических веществ в этих условиях ускоряется и охватывает практически 4 все органические вещества, если вводить в реакционную смесь катализатор -- сульфат серебра. Реакции окисления отдельных элементов органических веществ проходят в соответствии с указанным нами выше при формулировании понятия ХПКтеор, но получаемый результат составляет 95-- 98% от ХПКтеор, (за немногими исключениями). Потеря (2-- 5%) объясняется, главным образом, образованием летучих, устойчивых к окислению продуктов распада (СО, СН 4). Возможно, с другой стороны, что некоторые азотсодержащие органические вещества образуют при окислении N 2 вместо NH 3 , что приводит к ошибке с противоположным знаком.

Не окисляются пиридин и его гомологи, пиррол, пирролидин, пролин, никотиновая кислота и некоторые другие азотсодержащие гетероциклические соединения, бензол, толуол и другие ароматические углеводороды, парафин, нафталин.

Если анализируемая проба содержит неорганические восстановители, то количество их, определяемое отдельно соответствующими методами, должно быть вычтено (в пересчете на кислород) из результата определения ХПК.

Следует, однако, учитывать, что H 2 S из сульфидов и S0 2 из сульфитов, гидросульфитов и др. улетучиваются при определении ХПК (надо только серную кислоту вливать в колбу ранее бихромата) и, следовательно, поправку на их присутствие вводить не следует.

Мешающие вещества. Мешающее влияние хлоридов (окисляющихся в процессе определения до элементного хлора) устраняют маскированием их сульфатом ртути(II) в количестве 22,2 мг HgS0 4 на мг CI - . Образующийся очень мало диссоциированный хлорид ртути (II) достаточно устойчив даже в присутствии большой концентрации серной кислоты и бихромата.

Если имеется уверенность в отсутствии органических веществ, для окисления которых требуется катализатор сульфат серебра, то можно провести это определение без катализатора и без ртути. Хлорид-ионы тогда количественно окисляются до свобод го хлора, и из полученного результата определения надо будет вычесть поправку: на 1 мг хлорид-ионов расходуется 0,23 мг кислорода.

Мешают определению нитриты (часто присутствующие в сточных водах, прошедших биохимическую очистку). Для их устранения вводят в колбу по 10 мг сульфаминовой кислоты на 3 мг NC, При кипячении раствора нитрит-ионы удаляются в виде азот а избыток сульфаминовой кислоты переходит в сульфат аммонония.

Реактивы

Серная кислота пл. 1,84 г/см 3 чда. Сульфат серебра твердый чда.

N -Фенилантраниловая кислота, 0,25 г кислоты растворяют в 12 мл 0,1 раствора едкого натра и разбавляют водой до 250 мл.

Ферроин, 1,485 г 1,10-фенантролина и 0,695 г FeS0 4 -7H 2 0 растворить в воде и разбавляют раствор водой до 100 мл.

Бихромат калия, 0,25 н. стандартный раствор. 12,258 г бихромата калия предварительно высушенного в течение 2 ч при 105 °С, растворяют в дистилированной воде и разбавляют раствор водой до 1 л.

Соль Мора, приблизительно 0,25 н. раствор. Растворяют 98 г соли М в» дистиллированной воде, прибавляют 20 мл концентрированной серной кисло, и разбавляют раствор дистиллированной водой до 1 л.

Титр этого раствора устанавливают по стандартному раствору бихромата калия. Отобрав 25 мл стандартного раствора бихромата калия, разбавляют е Дистиллированной водой до 250 мл, приливают 20 мл концентрированной серной кислоты и дают остыть. Затем прибавляют 3--4 капли раствора феррои или 5--10 капель раствора N-фенилантраниловой кислоты и титруют раствор соли Мора.

Сульфат ртути (И) кристаллический чда.

Ход определения. Отбирают такой объем анализируемой сто ной воды, чтобы на окисление расходовалось не более 20 мл ста дартного раствора бихромата калия и чтобы в ней содержало не более 40 мг хлорид-ионов, разбавляют до 50 мл дистиллированной водой и переносят в круглодонную колбу вместимость 300 мл. Прибавляют 1 г сульфата ртути(II), 5 мл серной кислот перемешивают до растворения сульфата ртути, затем влива 25,0 мл стандартного раствора бихромата калия, очень оеторожн малыми порциями вливают 70 мл серной кислоты, всыпа 0,4--0,5 г сульфата серебра, вводят в колбу несколько стеклянн бусин или кусочков пемзы, закрывают пробкой, соединенной с о ратным холодильником, и нагревают до слабого кипения, котор поддерживают 2 ч. Затем охлаждают, обмывают стенки холодил ника 25 мл дистиллированной воды и переносят содержимое эт колбы в коническую колбу вместимостью 500 мл, обмывая стен первой колбы несколько раз дистиллированной водой. Добавив дистиллированную воду до объема 350 Мл, вводят 3--4 капли раствора ферроина (10--15 капель раствора N-фенилаитраниловой кислоты) и оттитровывают избыток бихромата титрованным раствором соли Мора.

Проводят холостой опыт; для этого берут 50 мл дистиллированной воды и проводят ее через все ступени анализа.

Расчет. Химическое поглощение кислорода (ХПК), выраженное числом миллиграммов кислорода на 1 л сточной воды, вычисляют по формуле

где а -- объем "раствора соли Мора, израсходованного на титрование в холостом опыте: мл; Ь -- объем того же раствора, израсходованного на титрование пробы, мл; N -- нормальность титрованного раствора соли Мора; V -- объем анализируемой сточной воды, м; 8 --эквивалент кислорода.

В присутствии сульфидов (а также меркаптанов, органических сульфидов и дисульфидов) при добавлении сульфата ртути (II) выпадает черный осадок сульфида ртути, не растворяющийся при дальнейшей обработке. В этих случаях рекомендуется несколько изменить порядок прибавления реактивов по сравнению с описанным выше.

Ход определения. К 50 мл пробы (или меньшему ее объему, разбавленному дистиллированной водой до 50 мл) сначала прибавляют 25,0 мл титрованного раствора бихромата, затем наливают 5 мл концентрированной серной кислоты и дают постоять 10--20 мин при комнатной температуре для окисления легкоокисляющихся веществ, в том числе и сернистых соединений. Затем прибавляют 1 г сульфата ртути(II), вводят 70 мл концентрированной серной кислоты, 0,5 г сульфата серебра и продолжают, как описано выше.

Ускоренный метод определения ХПК

Этот метод предназначен для постоянных ежедневных анализов, проводимых для контроля работы очистных сооружений или состояния воды в водоеме. Результаты определения, как правило, получаются несколько ниже, чем при анализе арбитражным методом, но они обычно достаточно хорошо воспроизводимы. Рекомендуется периодически проводить определения обоими методами, ускоренным и арбитражным, для нахождения приблизительного коэффициента пересчета. Следует учитывать, что расхождения между результатами обоих методов особенно велики, когда пробасодержит трудноокисляемые вещества, такие, как уксусная кислота, аланин, бензол и др.

Главная особенность ускоренного метода -- повышенная концентрация H2SO4. Нагревания извне не требуется, температура повышается за счет тепла, выделяющегося при смешении вод с концентрированной серной кислотой.

Ход определения. Если ХПК анализируемой воды -- в пределах 500--400 мг/л кислорода, берут для анализа 1 мл пробы, если ХПК 50--500 мг/л, отбирают 5 мл пробы, если ХПК выше 4000 мг/л, пробу предварительно разбавляют, если же ХПК ниже 60 мг/л, метод этот применять нельзя.

В пробу вводят 2,& мл 0,25 н. раствора бихромата калия, затем 0,2 г сульфата ртути (II) и при перемешивании -- концентрированную серную кислоту (7,5 мл на 1 мл пробы, 15 мл на 5 мл пробы) При этом температура раствора поднимается выше 100 °С. Через 2 мин охлаждают раствор до комнатной температуры, приливаю 100 мл дистиллированной воды и титруют избыток бихромата, как в арбитражном методе.

Фотометрический метод определения ХПК при малых концентрациях органических веществ

Приведенный выше арбитражный метод не дает воспроизводимых результатов при анализе вод, содержащих малые количеств органических веществ, например сточных вод, прошедших через очистные сооружения, и многих природных вод. Причиной является то, что при добавлении в пробу обычных количеств бихромат приходится обратно оттитровывать практически весь введенны бихромат, а при прибавлении к пробе малых количеств бихромат реакции окисления им органических веществ проходят очень медленно и неполно.

С тем же, по существу, затруднением мы встречаемся при применении предложенных некоторыми авторами фотометрических методов. При неизбежном большом избытке бихромат-ионов в растворенельзя стребуемой точностью фотометрически определит ни ослабление окраски бихромат-ионов, происшедшей в результат реакций этих ионов с органическими веществами пробы, ни концентрацию образовавшихся зеленых ионов хрома(III) на фон большой концентрации ионов Сг 2 07~.

В предлагаемом методе количество вводимого бихромата так Же, как ив арбитражном методе, но по окончании реакции образвавшиеся ионы хрома(III) отделяют от избытка бихромат (см. разд. 6,25) и затем хром(III) определяют фотометрически его реакции с ЭДТА.

Метод позволяет, определять ХПК от 2 до 100 мг/л.

Определение при содержании хлорид-ионов ниже 25 мг/л

Реактивы

Бихромат калия -- см. разд. 5.6.2. Сульфат серебра -- см. разд. 5.6.2.

Едкий натр, 45%-ный раствор. Растворяют реактив хч в дважды перегнанной и прокипяченной воде.

Серная кислота, 2 н. раствор.

Оксид магния хч. Продажный порошкообразный реактив прокаливают около 1 ч в муфельной печи, хранят в банке, снабженной притертой пробкой. Универсальная индикаторная бумага или бумага конго. Хлорид аммония чда. ЭДТА, 10%-ный водный раствор. Сегнетова соль, 20%-ный раствор.

Аммиак, продажный 25%-ный раствор, разбавленный (1: 1). Уксусная кислота, 2 н. раствор. Фенолфталеин, 1%-ный спиртовый раствор.

Дистиллированная вода, дважды перегнанная (с добавлением H2SO4- H КМпО) в стеклянном приборе на шлифах.

Хромовые квасцы. Основной стандартный раствор. Взвешивают 4,8024 г невыветрившихся кристаллов хромовых квасцов KCr(S0 4)2-12Н 2 0 чда, растворяют в дистиллированной воде и разбавляют до 500 мл; 1 мл получененого раствора содержит 1 мг хрома.

Рабочий стандартный раствор. В мерную колбу вместимостью 1 л наливают, пользуясь бюреткой, 216,7 мл основного стандартного раствора хромовых квасцов и разбавляют дистиллированной водой до метки; 1 мл полученного раствора содержит 0,2167 мг хрома, что отвечает 0,1 мг кислорода в процессе определения ХПК.

Калибровочный график. В мерные колбы вместимостью 100 мл наливают 0,5; 1, 2, ... 20 мл рабочего стандартного раствора хромовых квасцов, что соответствует концентрации кислорода 2; 4; 8, ... 80 мг/л, разбавляют каждый раствор до 25 мл дистиллированной водой, прибавляют хлорид аммония, сегнетову соль, раствор ЭДТА и т. д. и продолжают, как при анализе пробы. После окрашивания и разбавления каждого раствора до метки измеряют оптическую плотность при -- 536 им и толщине слоя 5 см и строят калибровочный график.

Ход определения. В колбу прибора для определения ХПК помещают 25 мл анализируемой воды, приливают 10 мл раствора бихромата калия, 35 мл концентрированной серной кислоты и насыпают 0,1 г сульфата серебра. Затем опускают в колбу несколько стеклянных бусин и, соединив ее с обратным холодильником, кипятят 2 ч. Одновременно проводят холостой опыт, взяв для него 25 мл дважды перегнанной воды.

По охлаждении раствора его переносят в мерную колбу вместимостью 200 мл, обмывая стенки первоначальной колбы дважды дистиллированной водой, разбавляют этой же водой до метки и перемешивают.

Отобрав 100 мл полученного раствора, переносят его в стакан вместимостью 400--450 мл, разбавляют дистиллированной водой до 300 мл и осторожно нейтрализуют. Сначала приливают около 30 мл раствора едкого натра, перемешивают, потом добавляют раствор NaOH по каплям до рН = 5--7. Значение рН определяют по индикаторной бумаге, прикасаясь к ней стеклянной палочкой, смоченной анализируемым раствором.

Нейтрализованный раствор нагревают до кипения; вносят в него 0,1 г оксида магния и кипятят 20 мин при слабом кипений Осадку дают собраться на дне стакана, затем раствор фильтруют черезплотный фильтр, предварительно промытый горячей водой стараясь не взмутить осадка. Осадок переносят на фильтр и промывают горячей водой до получения бесцветного фильтрата. Воронку с осадком помещают на маленькую коническую колбу в фильтре делают отверстие и через него смывают осадок горячей водой в колбу. Затем фильтр обрабатывают 3 мл 2 н. серной кис? лоты, предварительно обмывая ею стенки стакана для растворения приставших следов осадка. Фильтр и стакан промывают горячей водой, собирая промывные воды в ту же колбу, и кипятят содержимое колбы до растворения осадка.

Полученный раствор переносят в мерную колбу вместимость 100 мл, фильтруя его, если надо, через плотный фильтр. Прибавляют 3 г хлорида аммония, 2 мл раствора сегнетовой соли (дл связывания железа, если оно присутствует в комплекс), 2 мл р створа ЭДТА, 2--3 капли фенолфталеина; раствора аммиака до слабо-розового окрашивания и 5 мл уксусной кислоты (рН полученного раствора должен быть близок к 4). Содержимое мерной колбы нагревают и кипятят 5 мин, охлаждают и разбавляют дистиллированной водой до метки.

Определяют оптическую плотность полученного окрашенио раствора при л = 536 нм и толщине слоя жидкости в кювете 5 по отношению к холостому раствору.

Расчет. Найденное по калибровочному графику значение ХП в мг/л умножают на 2, поскольку в ходе анализа была отобран половина объема раствора, полученного после окисления бихроматом.

Подобные документы

    Знакомство с особенностями разработки озонохемилюминесцентного метода контроля органических соединений. Химическое потребление кислорода как общая концентрация кислорода, соответствующая количеству бихромата. Анализ критериев оценки качества воды.

    дипломная работа , добавлен 04.01.2015

    Роль кислорода как самого распространенного элемента на Земле в жизни планеты, его место в периодической системе Менделеева. Применение кислорода в лечебной практике и промышленности. Основные способы получения кислорода. История открытия кислорода.

    презентация , добавлен 12.12.2011

    Описание процесса определения концентрации растворенного кислорода химическим методом Винклера. Точность метода Винклера, возможные ошибки, нижняя граница определения. Мешающее действие редокс-активных примесей: железо, нитриты, органические вещества.

    отчет по практике , добавлен 15.01.2009

    К.В. Шееле как выдающийся немецкий химик, краткий очерк его жизни, этапы личностного и научного становления, значение в открытии кислорода. Исследование свойств кислорода английским свящeнником и химиком Джoзефом Пpистли. Лавуазье и открытие кислорода.

    контрольная работа , добавлен 26.12.2014

    Кислород как самый распространённый на Земле элемент. Аллотропные формы кислорода. Его широкое промышленное применение. Сварка и резка металлов. Последствия исчезновения для живых существ данного химического элемента на краткосрочный период времени.

    презентация , добавлен 28.12.2013

    Распространение кислорода в природе, его характеристика как химического элемента и простого вещества. Физические свойства кислорода, история его открытия, способы собирания и получения в лабораторных условиях. Применение и роль в организме человека.

    презентация , добавлен 17.04.2011

    Современные процессы получения серы и кислорода, как в промышленности, так и в лабораторных условиях. Общая характеристика технологических процессов, их сравнительное описание и отличительные особенности, химическое обоснование и оценка актуальности.

    доклад , добавлен 14.01.2016

    Возникновение и развитие катализа, его роль и значение, сферы использования. Факторы, определяющие скорость химического превращения. Методы определения активности катализаторов в определенном каталитическом процессе, их преимущества и недостатки.

    реферат , добавлен 14.04.2011

    Кислород как самый распространённый элемент земной коры, процесс его возникновения и массовая доля в воздухе. Физические и химические свойства кислорода, его реагентность. Растворённый кислород как из важнейших показателей качества воды, его измерение.

    курсовая работа , добавлен 04.05.2010

    Растительность болот и классификация торфа в заказнике. Метод определения органических веществ окситермография. Реагенты, вспомогательное оборудование. Методика определения влажности и зольности, элементного состава торфа, органического углерода мха.

В жидкостях сточных в роли опасных, деструктивно воздействующих на окружающую среду загрязняющих элементов могут содержаться как вещества взвешенные, так и вещества растворимые – учитывать при совершении различного рода работ нужно наличие как первых, так и вторых.

Основной целью производимого очищения сточных вод является значительное уменьшение концентрации загрязнений вплоть до достижения заданных предварительно нормированных показателей, определяемых, в подавляющем большинстве случаев, действующим на текущий момент проведения действий законодательным актом.

Уровень загрязнений жидкостей могут отражать сразу несколько факторов, важнейшими из которых можно с уверенностью считать БПК (доступнее для понимания человеческого ума - потребление кислорода биохимическое) и ХПК сточных вод (если говорить проще и понятнее - химическое потребление кислорода).

Замеры ХПК и БПК сточных вод должны производиться в обязательной мере при осуществлении процессов очищения жидкости на разнообразных сооружениях и очистных станциях. Компоновка очистных сооружений может иногда быть совершенно разной, отличаться от стандартов - в зависимости от действующих количественных и качественных характеристик обрабатываемой жидкости и степени имеющихся загрязнений.


Если говорить в общем и опираться на конкретику, то можно сказать, что сооружения очистные обладают похожей схемой обрабатывания стоков с целью понижения ХПК и БПК сточных вод.

Последовательность понижения БПК и ХПК в процессах очищения сточных вод

При произведении знающими мастерами первичного очищения стоков осуществляется удаление масляных соединений, крупных частиц, а также удаляемых многочисленных разнородных загрязнений. На данной стадии чаще всего применяются механические и физические способы очищения.

Вторичная очистка – процесс отделения загрязнителей и взвешенных частиц, которые могут содержаться даже в растворенном виде. Загрязняющие жидкость вещества имеют органическую природу, а потому они и очищаются благодаря использованию классических и новаторских методов биологического окисления.

Во время проведения этой стадии, последовательно применяются биологические способы очищения стоков. Стоит отметить, что определение показателей ХПК сточных вод важно как в первом, так и во втором случае.

При осуществлении же так называемой "третичной" очистки последовательно необходимо удалить все загрязнители, мелкие примеси и соли металлов, которые могли бы остаться после двух предыдущих очисток. Обращать внимание на химическое потребление кислорода в сточных водах обязательно. На данной стадии активно используются физико – химические способы: электродиализ, осмос, фильтрация через слой адсорбента и различные другие.

Во время проведения четвертой стадии, осуществляется полнейшее (насколько возможно) обезвоживание шлама для максимального понижения его веса и объема. Проведение данной операции ни в коей мере не является так называемой «панацеей», которая должна повлечь за собой понижение степени БПК и ХПК.

При проведении любой стадии очищения, такой показатель, как биохимическое потребление кислорода в сточных водах, может быть оптимизирован до нужных значений (это зависит, в первую очередь, от специфики и характера загрязненных жидкостей).

Далеко не всегда процессы очищения загрязнений производятся при применении всех четырех стадий обработки.

Бывает, что по окончанию первой стадии, в сооружениях очистных осуществляется сбрасывание в городской коллектор стоков, поскольку требуемые, допустимые нормы загрязнений уже были достигнуты (превышен разрешенный предел).

Европейцы, к слову, предпочитают крайностей не допускать, а стараются делать так, чтобы методика определения ХПК в сточных водах была более точной, нежели аналогичная процедура, проводимая на территории Российской Федерации - вполне возможно, что в этом (помимо материального аспекта и инструментальной части), также и состоит преимущество более продвинутых стран над нашими очистными сооружениями.


Отличия промышленных и бытовых сточных вод

Если пробовать задумываться над тем, что такое БПК в сточных водах, и какую роль этот показатель может в итоговом варианте отыгрывать, то нужно, в первую очередь, постараться как можно тщательнее и подробнее ознакомиться с характером выбросов.

В целом, правильно высчитать БПК всегда очень важно – без расчетов, как говорится, «никуда». Вообще, загрязнения могут быть бытового и промышленного происхождения (разделение по официальному принципу именно такое) - соответственно, и природа загрязнений при выбросе разных видов вод будет различаться.

Бытовые стоки, в подавляющем большинстве случаев, загрязняются органическими остатками, мусором, моющими средствами.

В варианте объединения бытовых стоков с промышленными, органику бытовых стоков можно с уверенностью считать дополнительной питающей средой для активного ила, что будет способствовать улучшенной работе биологии. При этом, уровень ХПК сточных вод также нужно будет учитывать, поскольку пренебрежение этим показателем влечет за собой серьёзнейшие последствия.

Введение

БПК является обязательным анализом, но его частое определение в заводских условиях затруднительно по ряду причин.

Под ХПК понимают количество растворенного в воде кислорода, выраженное в мг О на 1 л воды, необходимое для реакций окисления находящихся в сточной воде органических соединений.

Считается, что БПК составляет около 70% от массы кислорода, требуемого для полного окисления органических веществ в пробе воды до СО 2 и Н 2 О. При окислении сточных вод марганцевокислым калием (перманганатом) расход кислорода (БПК 5) едва достигает 25% его потребности для полного окисления органических веществ по сравнению с бихроматным методом определения окисляемости (ХПК). Поэтому ХПК дает более точную оценку количества органических примесей в воде, а величина ХПК выше, чем БПК 5 . В численном выражении ХПК обычно на 20 – 30% больше БПК, а на картофелекрахмальных заводах в сточных водах ХПК более чем в два раза превышает БПК, что объясняется их химическим составом.

Наиболее полное определение окисляемых органических веществ достигается бихроматным методом (метод Ю. Лурье). Недостатком его является длительное окисление (двухчасовое кипячение) и большой расход концентрированной серной кислоты.

Исследовательский институт водного хозяйства г. Братиславы (Чехия) разработал ускоренный бихроматный метод определения ХПК, который в настоящее время используется и на отечественных сахарных заводах.

Цель анализа провести оценку качества сточных вод по результатам их анализов на ХПК.

Принцип метода анализа основан на окислении органических веществ в сточных водах бихроматом калия.

Реактивы:

0,25 н. раствор K Cr O : 12,258 г K Cr O высушенного при температуре 105 ºС, растворить в 1 дм 3 дистиллированной воды;

0,25 н. раствор соли Мора: 98 г соли Мора растворить в дистиллированной воде, добавить 20 см 3 концентрированной H SO и после охлаждения довести дистиллированной водой до 1 дм 3 ;

Сульфат серебра – кристаллический, ч.д.а;

Фенилантраниловая кислота: 0,25 г фенилантраниловой кислоты растворить в 12 см 3 0,1 н. раствора NaOH и довести дистиллированной водой до 250 см 3 .



Приборы и материалы:

Колба Эрленмейера вместимостью 100 см 3 ;

Пипетки;

Цилиндр на 50 см 3 ;

Стеклянные шарики.

Ход определения

В колбу Эрленмейера вместимостью 100 см 3 пипеткой вводят 10 см 3 пробы или соответствующей ее части, доведенной дистиллированной водой до объема 10 см 3 .

Затем прибавляют приблизительно 0,1 г катализатора Ag SO , пипеткой вводят точно 5 см 3 0,25 н. раствора K Cr O , а из цилиндра при непрерывном помешивании - 15 см 3 концентрированной H SO .

В раствор кладут капилляры или стеклянные шарики для спокойного кипения и выдерживают его одну минуту. Далее прибавляют 20 см 3 дистиллированной воды и смесь охлаждают.

После охлаждения добавляют 3 – 4 капли N - фенилантраниловой кислоты и избыток не прореагировавшего бихромата калия оттитровывают 0,25 н. раствором соли Мора {FeSO (NH ) SO ·6H O} до светло- зеленого окрашивания.

Затем делается глухой опыт: берут 10 см 3 дистиллированной воды и делают анализ подобно рабочему опыту.

Расчеты:

Расчет ХПК проводится по формуле

где α - количество 0,25 н. раствора соли Мора, пошедшее на глухой опыт (10 см 3 дистиллированной воды), см 3 ; O , взятого для титрования, см 3 ;

Х – количество 0,25 н. раствора соли Мора, пошедшее на титрование 25 см 3 0,25 н. раствора, см 3 .

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ
ХИМИЧЕСКОГО ПОТРЕБЛЕНИЯ КИСЛОРОДА (ХПК)
В ПРОБАХ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ
ВОД ФОТОМЕТРИЧЕСКИМ МЕТОДОМ

ПНД Ф 14.1:2:4.210-2005

Методика допущена для целей государственного
экологического контроля

МОСКВА 2005 г.
(Издание 2013 г.)

1 ОБЩИЕ ПОЛОЖЕНИЯ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий нормативный документ устанавливает фотометрическую методику определения бихроматной окисляемости (химического потребления кислорода, далее - ХПК). Методика распространяется на следующие объекты анализа: воды питьевые; воды природные пресные, в том числе поверхностных и подземных источников водоснабжения; воды сточные производственные, хозяйственно-бытовые, ливневые и очищенные. Методика может быть использована для анализа проб талых, технических вод и проб снежного покрова.

Диапазон измеряемых значений ХПК составляет от 10 до 30000 мг/дм 3 (по методу А - от 10 до 100 мг/дм 3 и по методу Б - от 100 до 30000 мг/дм 3).

При значении ХПК свыше 1000 мг/дм 3 необходимо предварительное разбавление пробы.

Методика может быть использована для анализа проб воды с более высокими значениями ХПК при условии их предварительного разбавления, но не более чем в 100 раз.

Продолжительность анализа одной пробы - 4 часа, серии из 25 проб - 5 часов. Блок-схема проведения анализа приведена в .

2 НОРМАТИВНЫЕ ССЫЛКИ

5.1.2 Государственный стандартный образец (далее - ГСО) бихроматной окисляемости воды с погрешностью аттестованного значения при доверительной вероятности Р = 0,95 не более 2 %;

5.1.3 Дистиллятор или установка любого типа для получения воды дистиллированной по ГОСТ 6709 или воды для лабораторного анализа 2 степени чистоты по ГОСТ Р 52501 ;

5.1.4 Дозаторы медицинские лабораторные настольные (устанавливаемые на сосуд) или ручные, одноканальные с фиксированным или варьируемым объёмом дозирования по ГОСТ 28311 ;

5.1.5 Колбы мерные вместимостью 100 и 1000 см 3 по ГОСТ 1770 класс точности 2;

5.1.6 Кюветы стеклянные с завинчивающимися крышками для спектрофотометра. Размеры кюветы: высота 100 мм, диаметр 16 мм;

5.1.7 Пипетки градуированные вместимостью 1; 2; 5; 10 см 3 по ГОСТ 29227 , класс точности 2;

5.1.8 Пипетки с одной меткой вместимостью 1; 2; 5; 10; 100 см 3 по ГОСТ 29169 , класс точности 2;

5.1.9 Реактор для проведения минерализации с ячейками под круглые кюветы, обеспечивающий температуру (150 ± 5) °С (минерализатор), например, фирмы НАСН (США);

5.1.10 Термометр для минерализатора с диапазоном шкалы от 100 °С до 200 °С и ценой деления 2 °С;

5.1.11 Склянки из темного стекла вместимостью 500; 1000 см 3 ;

5.1.12 Спектрофотометр, обеспечивающий проведение измерения при длинах волн 450 нм и 620 нм, снабженный адаптером под круглые кюветы, например, фирмы НАСН (США);

5.1.13 Стаканчики для взвешивания вместимостью 50 см 3 по ГОСТ 25336 ;

5.1.14 Сушильный шкаф любой марки, обеспечивающий температуру (105 ± 5) °С, например, СНОЛ-3,5 по ТУ 16-681.032;

5.1.15 Холодильник бытовой любой марки, обеспечивающий температуру (2 - 10) °С;

5.1.16 Шпатель;

5.1.17 Штатив для хранения кювет;

5.1.18 Экран защитный для реактора, изготовленный из поликарбоната.

Допускается использование средств измерения, вспомогательного оборудования, лабораторной посуды с аналогичными или лучшими метрологическими и техническими характеристиками.

5.2 Реактивы и материалы

5.2.1 Вода дистиллированная по ГОСТ 6709 или для лабораторного анализа по ГОСТ Р 52501 (2-ой степени чистоты), (далее - вода дистиллированная);

5.2.2 Калий двухромовокислый (бихромат калия), х.ч. по ГОСТ 4220 или стандарт-титр, например, по ТУ 6-09-2540;

5.2.4 Ртуть (II) сернокислая (сульфат ртути), ч.д.а. по ТУ 2624-004-48438881;

6.2 При работе с оборудованием необходимо соблюдать правила электробезопасности при работе с электроустановками по ГОСТ Р 12.1.019 .

6.3 Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004

6.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009 .

7 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРА

К выполнению измерений и обработке их результатов допускаются лица, имеющие специальное среднее или высшее образование химического профиля, владеющие техникой фотометрического анализа и изучившие правила эксплуатации используемого оборудования.

8 УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

температура воздуха

от 20 °С до 28 °С;

относительная влажность воздуха

не более 80 % при 25 °С

напряжение в электросети

В мерную колбу вместимостью 100 см 3 пипеткой переносят 10 см 3 раствора ГСО со значением ХПК 10000 мг/дм 3 и доводят объем раствора дистиллированной водой до метки. Срок хранения раствора - 3 месяца при температуре (2 - 10) °С.

10.2.5 Градуировочные растворы

При использовании метода А:

В мерные колбы вместимостью 100 см 3 пипеткой или дозатором переносят 1,0; 2,0; 5,0; 8,0; 10,0 см 3 основного градуировочного раствора со значением ХПК 1000 мг/дм 3 , приготовленного по , объемы растворов в колбах доводят до метки дистиллированной водой. Значения ХПК полученных растворов составляют соответственно 10; 20; 50; 80; 100 мг/дм 3 .

При использовании метода Б:

В мерные колбы вместимостью 100 см 3 пипеткой или дозатором переносят 1,0; 2,0; 4,0; 5,0; 8,0; 10,0 см 3 раствора ГСО со значением ХПК 10000 мг/дм 3 , объемы растворов в колбах доводят до метки дистиллированной водой. Значения ХПК полученных растворов составляют соответственно 100; 200; 400; 500; 800; 1000 мг/дм 3 .

При установлении градуировочных характеристик по методам А и Б используют только свежеприготовленные растворы.

10.3 Установление градуировочной характеристики

10.3.1 В кюветы для измерения значений ХПК пипеткой вносят по 2 см 3 каждого градуировочного раствора, по 0,5 см 3 раствора бихромата калия (для выполнения анализа по методу А или по методу Б), по 3 см 3 раствора сернокислого серебра в серной кислоте и приблизительно 0,05 г сернокислой ртути. Готовят по два образца каждого градуировочного раствора. Одновременно готовят 3 параллельные холостые пробы. В качестве холостой пробы используют дистиллированную воду с добавлением всех реактивов.

X - значение ХПК в анализируемой пробе, мг/дм 3 .

Результаты измерений значения ХПК при занесении в протокол анализа округляют с точностью в диапазоне:

от 10 до 1000 мг/дм 3 - до 1 мг/дм 3 ;

свыше 1000 до 10000 мг/дм 3 - до 10 мг/дм 3 ;

свыше 10000 до 30000 мг/дм 3 - до 100 мг/дм 3 .

14 ОЦЕНКА ПРИЕМЛЕМОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

14.1 При получении двух результатов измерений (Х 1 , Х 2) в условиях повторяемости (сходимости) осуществляют проверку приемлемости результатов в соответствии с требованиями ГОСТ Р ИСО 5725-6 (раздел 5). 14

15 КОНТРОЛЬ ТОЧНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

15.1 В случае регулярного выполнения анализа по методике рекомендуется проводить контроль стабильности результатов измерений путем контроля среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности и погрешности в соответствии с рекомендациями ГОСТ Р ИСО 5725 (часть 6). Образец для контроля готовят с использованием ГСО и дистиллированной воды. Периодичность контроля регламентируют во внутренних документах лаборатории.

15.2 Оперативный контроль точности результатов измерений рекомендуется проводить с каждой серией проб, если анализ по методике выполняется эпизодически, а также при возникновении необходимости подтверждения результатов измерений отдельных проб (при получении нестандартного результата измерений; результата, превышающего ПДК, и т.п.).

В качестве образцов для контроля используют образцы, приготовленные с использованием ГСО и дистиллированной воды. Контрольные образцы со значениями ХПК менее 40 мг/дм 3 используют свежеприготовленными, а образцы со значениями ХПК (40 - 1000) мг/дм 3 хранят в течение 1 месяца при температуре (2 - 10) °С.

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры (К к) с нормативом контроля (К).

Результат контрольной процедуры К к рассчитывают по формуле:

где Δ л - характеристика погрешности аттестованного значения ХПК в образце для контроля, установленная в лаборатории при реализации методики, мг/дм 3 .

Примечание - На первом этапе проведения контроля после внедрения методики допускается считать Δ л = 0,84·Δ, где Δ - приписанная характеристика погрешности методики, которую рассчитывают по формуле

Значения δ приведены в таблице .

Качество контрольной процедуры признают удовлетворительным при выполнении условия:

При невыполнении условия контроль повторяют. При повторном невыполнении условия выясняют причины, приводящие к неудовлетворительным результатам.