Корень степени n: основные определения. Инженерный калькулятор Как вычислить квадратный корень в степени

Корень n-ной степени из числа x - это такое неотрицательное число z, которое при возведении в n-ную степень превращается в x. Определение корня входит в список основных арифметических операций, с которыми мы знакомимся еще в детстве.

Математическое обозначение

«Корень» произошел от латинского слова radix и сегодня слово «радикал» используется как синоним данного математического термина. С 13-го века математики обозначали операцию извлечения корня буквой r с горизонтальной чертой над подкоренным выражением. В 16-веке было введено обозначение V, которое постепенно вытеснило знак r, однако горизонтальная черта сохранилась. Его легко набирать в типографии или писать от руки, но в электронных изданиях и программировании распространилось буквенное обозначение корня - sqrt. Именно так мы и будем обозначать квадратные корни в данной статье.

Квадратный корень

Квадратным радикалом числа x называется такое число z, которое при умножении на самого себя превращается в x. Например, если мы умножим 2 на 2, то получим 4. Двойка в этом случае и есть квадратный корень из четырех. Умножим 5 на 5, получим 25 и вот мы уже знаем значение выражения sqrt(25). Мы можем умножить и – 12 на −12 и получить 144, а радикалом 144 будет как 12, так и −12. Очевидно, что квадратные корни могут быть как положительными, так и отрицательными числами.

Своеобразный дуализм таких корней важен для решения квадратных уравнений, поэтому при поиске ответов в таких задачах требуется указывать оба корня. При решении алгебраических выражений используются арифметические квадратные корни, то есть только их положительные значения.

Числа, квадратные корни которых являются целыми, называются идеальными квадратами. Существует целая последовательность таких чисел, начало которой выглядит как:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256…

Квадратные корни других чисел представляют собой иррациональные числа. К примеру, sqrt(3) = 1,73205080757… и так далее. Это число бесконечно и не периодично, что вызывает некоторые затруднения при вычислении таких радикалов.

Школьный курс математики утверждает, что нельзя извлекать квадратные корни из отрицательных чисел. Как мы узнаем в вузовском курсе матанализа, делать это можно и нужно – для этого и нужны комплексные числа. Однако наша программа рассчитана для извлечения действительных значений корней, поэтому она не вычисляет радикалы четной степени из отрицательных чисел.

Кубический корень

Кубический радикал числа x - это такое число z, которое при умножении на себя три раза дает число x. Например, если мы умножим 2 × 2 × 2, то получим 8. Следовательно, двойка является кубическим корнем восьми. Умножим три раза на себя четверку и получим 4 × 4 × 4 = 64. Очевидно, что четверка является кубическим корнем для числа 64. Существует бесконечная последовательность чисел, кубические радикалы которых являются целыми. Ее начало выглядит как:

1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744…

Для остальных чисел кубические корни являются иррациональными числами. В отличие от квадратных радикалов, кубические корни, как и любые нечетные корни, можно извлекать из отрицательных чисел. Все дело в произведении чисел меньше нуля. Минус на минус дает плюс – известное со школьной скамьи правило. А минус на плюс – дает минус. Если перемножать отрицательные числа нечетное количество раз, то результат будет также отрицательным, следовательно, извлечь нечетный радикал из отрицательного числа нам ничего не мешает.

Однако программа калькулятора работает иначе. По сути, извлечение корня – это возведение в обратную степень. Квадратный корень рассматривается как возведение в степень 1/2, а кубический – 1/3. Формулу возведения в степень 1/3 можно переиначить и выразить как 2/6. Результат один и тот же, но извлекать такой корень из отрицательного числа нельзя. Таким образом, наш калькулятор вычисляет арифметические корни только из положительных чисел.

Корень n-ной степени

Столь витиеватый способ вычисления радикалов позволяет определять корни любой степени из любого выражения. Вы можете извлечь корень пятой степени из куба числа или радикал 19 степени из числа в 12 степени. Все это элегантно реализовано в виде возведения в степени 3/5 или 12/19 соответственно.

Рассмотрим пример

Диагональ квадрата

Иррациональность диагонали квадрата была известна еще древним греками. Они столкнулись с проблемой вычисления диагонали плоского квадрата, так как ее длина всегда пропорциональна корню из двух. Формула для определения длины диагонали выводится из и в конечном итоге принимает вид:

d = a × sqrt(2).

Давайте определим квадратный радикал из двух при помощи нашего калькулятора. Введем в ячейку «Число(x)» значение 2, а в «Степень(n)» также 2. В итоге получим выражение sqrt(2) = 1,4142. Таким образом, для грубой оценки диагонали квадрата достаточно умножить его сторону на 1,4142.

Заключение

Поиск радикала – стандартная арифметическая операция, без которой не обходятся научные или конструкторские вычисления. Конечно, нам нет нужды определять корни для решения бытовых задач, но наш онлайн-калькулятор определенно пригодится школьникам или студентам для проверки домашних заданий по алгебре или математическому анализу.

Пользователи электронных таблиц широко используют функцию по извлечению корня числа. Поскольку работа с данными обычно требуют обработки больших чисел, считать вручную бывает довольно сложно. В этой статье вы найдете подробный разбор вопроса об извлечении корня любой степени в Excel.

Довольно легкая задача, поскольку в программе присутствует отдельная функция, которую можно взять из перечня. Для этого вам нужно сделать следующее:

  1. Выберите ячейку, в которой хотите прописать функцию, кликнув на нее один раз левой кнопкой мыши. Появится черная обводка, оранжевым подсветятся активная строка и столбец, а в адресной ячейке появится имя.

  2. Нажмите на кнопку «fx» («Вставить функцию»), которая расположена выше названий столбцов, после адресной ячейки, перед строкой формул.

  3. Появится ниспадающее меню, в котором нужно найти функцию «Корень». Это можно сделать в категории «Математические» или в «Полном алфавитном перечне», прокрутив мышкой меню чуть ниже.

  4. Выберите пункт «Корень», нажав один раз левой кнопкой мыши, далее – кнопку «ОК».

  5. Появится следующее меню – «Аргументы функции».

  6. Введите число или выберите ячейку, в которой заранее было написано данное выражение или формула, для этого один раз кликните левой кнопкой по строке «Число», далее наведите курсор на нужную вам ячейку и нажмите на нее. Имя ячейки будет автоматически забито в строку.

  7. Нажмите на кнопку «ОК».

  8. И все готово, функция посчитала квадратный корень, записав результат в выбранную ячейку.

Существует также возможность извлечь квадратный корень из суммы числа и ячейки (данных, которые забиты в данной ячейке) или двух ячеек, для этого введите значения в строку «Число». Напишите число и кликните один раз по ячейке, программа сама поставит знак сложения.

На заметку! Эту функцию можно вписать и вручную. В строку формул введите следующее выражение: «=КОРЕНЬ(x)», где х – искомое число.

Извлечение корней 3-ей, 4-ой и других степеней.

Отдельной функции для решения этого выражения в Excel нет. Для извлечения корня n-ой степени необходимо для начала рассмотреть его с математической точки зрения.

Корень n-ой степени равен возведению числа в противоположную степень (1/n). То есть, квадратный корень соответствует числу в степени ½ (или 0.5).

Например:

  • корень четвертой степени из 16 равен 16 в степень ¼;
  • кубический корень из 64 = 64 в степени 1/3;

Выполнить данное действие в программе электронных таблиц можно двумя способами:

  1. С помощью функции.
  2. Используя значок степени «^», ввести выражение вручную.

Извлечение корня любой степени с помощью функции

  1. Выберите нужную ячейку и кликните на «Вставить функцию» во вкладке «Формулы».

  2. Раскройте список в пункте «Категория», в категории «Математические» или «Полный алфавитный перечень» найдите функцию «Степень».

  3. В строке «Число» введите цифру (в нашем случае – это число 64) или имя ячейки, кликнув на нее один раз.

  4. В строчке «Степень» напечатайте степень, в которую вы хотите возвести корень (1/3).

    Важно! Для обозначения знака деления необходимо использовать значок «/», а не стандартный знак деления «:».

  5. Нажмите «ОК», и результат действия появится в изначально выбранной ячейке.

Примечание! Наиболее подробную инструкцию с фото по работе с функциями смотри в статье выше.

Извлечение корня любой степени с использованием значка степени «^»


Примечание! Записывать степень можно как дробью, так и десятичным числом. Например, дробь ¼ можно записать как 0,25. Для отделения десятых, сотых, тысячных и так далее разрядов используйте запятую, как принято в математике .

Примеры записи выражений


Чтобы успешно использовать на практике операцию извлечения корня, нужно познакомиться со свойствами этой операции.
Все свойства формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаками корней.

Теорема 1. Корень n-й степени (n=2, 3, 4,...) из произведения двух неотрицательных чипсел равен произведению корней n-й степени из этих чисел:

Замечание:

1. Теорема 1 остается справедливой и для случая, когда подкоренное выражение представляет собой произведение более чем двух неотрицательных чисел.

Теорема 2. Если , и n - натуральное число, большее 1, то справедливо равенство


Краткая (хотя и неточная) формулировка, которую удобнее использовать на практике: корень из дроби равен дроби от корней.

Теорема 1 позволяет нам перемножать только корни одинаковой степени , т.е. только корни с одинаковым показателем.

Теорема 3.Если , k - натуральное число и n - натуральное число, большее 1, то справедливо равенство

Иными словами, чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.
Это - следствие теоремы 1. В самом деле, например, для к = 3 получаем: Точно так же можно рассуждать в случае любого другого натурального значения показателя к.

Теорема 4.Если , k, n - натуральные числа, большее 1, то справедливо равенство

Иными словами, чтобы извлечь корень из корня, достаточно перемножить показатели корней.
Например,

Будьте внимательны! Мы узнали, что над корнями можно осуществлять четыре операции: умножение, деление, возведение в степень и извлечение корня (из корня). А как же обстоит дело со сложением и вычитанием корней? Никак.
Например, вместо нельзя написать В самом деле, Но ведь очевидно, что

Теорема 5.Если показатели корня и подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится, т.е.



Примеры решения заданий


Пример 1. Вычислить

Решение.
Воспользовавшись первым свойством корней (теорема 1), получим:

Пример 2. Вычислить
Решение. Обратим смешанное число в неправильную дробь.
Имеем Воспользовавшись вторым свойством корней (теорема 2 ), получим:


Пример 3. Вычислить:

Решение. Любая формула в алгебре, как вам хорошо известно, используется не только «слева направо», но и «справа налево». Так, первое свойство корней означает, что можно представить в виде и, наоборот, можно заменить выражением . То же относится и ко второму свойству корней. Учитывая это, выполним вычисления.

Часто преобразование и упрощение математических выражений требует перехода от корней к степеням и наоборот. Данная статья рассказывает о том, как осуществлять перевод корня в степень и обратно. Рассматривается теория, практические примеры и наиболее распространенные ошибки.

Переход от степеней с дробными показателями к корням

Допустим, мы имеем число с показателем степени в виде обыкновенной дроби - a m n . Как записать такое выражение в виде корня?

Ответ вытекает из самого определения степени!

Определение

Положительное число a в степени m n - это корень степени n из числа a m .

При этом, обязательно должно выполнятся условие:

a > 0 ; m ∈ ℤ ; n ∈ ℕ .

Дробная степень числа нуль определяется аналогично, однако в этом случае число m принимается не целым, а натуральным, чтобы не возникло деления на 0:

0 m n = 0 m n = 0 .

В соответствии с определением, степень a m n можно представить в виде корня a m n .

Например: 3 2 5 = 3 2 5 , 1 2 3 - 3 4 = 1 2 3 - 3 4 .

Однако, как уже было сказано, не следует забывать про условия: a > 0 ; m ∈ ℤ ; n ∈ ℕ .

Так, выражение - 8 1 3 нельзя представить в виде - 8 1 3 , так как запись - 8 1 3 попросту не имеет смысла - степень отрицательных чисел на определена.При этом, сам корень - 8 1 3 имеет смысл.

Переход от степеней с выражениями в основании и дробными показателями осуществляется аналогично на всей области допустимых значений (далее - ОДЗ) исходных выражений в основании степени.

Например, выражение x 2 + 2 x + 1 - 4 1 2 можно представить в виде квадратного корня x 2 + 2 x + 1 - 4 .Выражение в степени x 2 + x · y · z - z 3 - 7 3 переходит в выражение x 2 + x · y · z - z 3 - 7 3 для всех x , y , z из ОДЗ данного выражения.

Обратная замена корней степенями, когда вместо выражения с корнем записывается выражения со степенью, также возможна. Просто перевернем равенство из предыдущего пункта и получим:

Опять же, переход очевиден для положительных чисел a . Например, 7 6 4 = 7 6 4 , или 2 7 - 5 3 = 2 7 - 5 3 .

Для отрицательных a корни имеют смысл. Например - 4 2 6 , - 2 3 . Однако, представить эти корни в виде степеней - 4 2 6 и - 2 1 3 нельзя.

Можно ли вообще преобразовать такие выражения со степенями? Да, если произвести некоторые предварительные преобразования. Рассмотрим, какие.

Используя свойства степеней, можно выполнить преобразования выражения - 4 2 6 .

4 2 6 = - 1 2 · 4 2 6 = 4 2 6 .

Так как 4 > 0 , можно записать:

В случае с корнем нечетной степени из отрицательного числа, можно записать:

A 2 m + 1 = - a 2 m + 1 .

Тогда выражение - 2 3 примет вид:

2 3 = - 2 3 = - 2 1 3 .

Разберемся теперь, как корни, под которыми содержатся выражения, заменяются на степени, содержащие эти выражения в основании.

Обозначим буквой A некоторое выражение. Однако не будем спешить с представлением A m n в виде A m n . Поясним, что здесь имеется в виду. Например, выражение х - 3 2 3 , основываясь на равенстве из первого пункта, хочется представить в виде x - 3 2 3 . Такая замена возможна только при x - 3 ≥ 0 , а для остальных икс из ОДЗ она не подходит, так как для отрицательных a формула a m n = a m n не имеет смысла.

Таким образом, в рассмотренном примере преобразование вида A m n = A m n является преобразованием, сужающим ОДЗ, а из-за неаккуратного применения формулы A m n = A m n нередко возникают ошибки.

Чтобы правильно перейти от корня A m n к степени A m n , необходимо соблюдать несколько пунктов:

  • В случае, если число m - целое и нечетное, а n - натуральное и четное, то формула A m n = A m n справедлива на всей ОДЗ переменных.
  • Если m - целое и нечетное, а n - натуральное и нечетное,то выражение A m n можно заменить:
    - на A m n для всех значений переменных, при которых A ≥ 0 ;
    - на - - A m n для для всех значений переменных, при которых A < 0 ;
  • Если m - целое и четное, а n - любое натуральное число, то A m n можно заменить на A m n .

Сведем все эти правила в таблицу и приведем несколько примеров их использования.

Вернемся к выражению х - 3 2 3 . Здесь m = 2 - целое и четное число, а n = 3 - натуральное число. Значит, выражение х - 3 2 3 правильно будет записать в виде:

х - 3 2 3 = x - 3 2 3 .

Приведем еще один пример с корнями и степенями.

Пример. Перевод корня в степень

x + 5 - 3 5 = x + 5 - 3 5 , x > - 5 - - x - 5 - 3 5 , x < - 5

Обоснуем результаты, приведенные в таблице. Если число m - целое и нечетное, а n - натуральное и четное, для всех переменных из ОДЗ в выражении A m n значение A положительно или неотрицательно (при m > 0). Именно поэтому A m n = A m n .

Во втором варианте, когда m - целое, положительное и нечетное, а n - натуральное и нечетное, значения A m n разделяются. Для переменных из ОДЗ, при которых A неотрицательно, A m n = A m n = A m n . Для переменных, при которых A отрицательно, получаем A m n = - A m n = - 1 m · A m n = - A m n = - A m n = - A m n .

Аналогично рассмотрим и следующий случай, когда m - целое и четное, а n - любое натуральное число. Если значение A положительно или неотрицательно, то для таких значений переменных из ОДЗ A m n = A m n = A m n . Для отрицательных A получаем A m n = - A m n = - 1 m · A m n = A m n = A m n .

Таким образом, в третьем случае для всех переменных из ОДЗ можно записать A m n = A m n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пришло время разобрать способы извлечения корней . Они базируются на свойствах корней , в частности, на равенстве , которое справедливо для любого неотрицательного числа b.

Ниже мы по очереди рассмотрим основные способы извлечения корней.

Начнем с самого простого случая – с извлечения корней из натуральных чисел с использованием таблицы квадратов, таблицы кубов и т.п.

Если же таблицы квадратов, кубов и т.п. нет под руками, то логично воспользоваться способом извлечения корня, который подразумевает разложение подкоренного числа на простые множители.

Отдельно стоит остановиться на , что возможно для корней с нечетными показателями.

Наконец, рассмотрим способ, позволяющий последовательно находить разряды значения корня.

Приступим.

Использование таблицы квадратов, таблицы кубов и т.д.

В самых простых случаях извлекать корни позволяют таблицы квадратов, кубов и т.д. Что же представляют собой эти таблицы?

Таблица квадратов целых чисел от 0 до 99 включительно (она показана ниже) состоит из двух зон. Первая зона таблицы располагается на сером фоне, она с помощью выбора определенной строки и определенного столбца позволяет составить число от 0 до 99 . Для примера выберем строку 8 десятков и столбец 3 единицы, этим мы зафиксировали число 83 . Вторая зона занимает оставшуюся часть таблицы. Каждая ее ячейка находится на пересечении определенной строки и определенного столбца, и содержит квадрат соответствующего числа от 0 до 99 . На пересечении выбранной нами строки 8 десятков и столбца 3 единицы находится ячейка с числом 6 889 , которое является квадратом числа 83 .


Таблицы кубов, таблицы четвертых степеней чисел от 0 до 99 и так далее аналогичны таблице квадратов, только они во второй зоне содержат кубы, четвертые степени и т.д. соответствующих чисел.

Таблицы квадратов, кубов, четвертых степеней и т.д. позволяют извлекать квадратные корни, кубические корни, корни четвертой степени и т.д. соответственно из чисел, находящихся в этих таблицах. Объясним принцип их применения при извлечении корней.

Допустим, нам нужно извлечь корень n -ой степени из числа a , при этом число a содержится в таблице n -ых степеней. По этой таблице находим число b такое, что a=b n . Тогда , следовательно, число b будет искомым корнем n -ой степени.

В качестве примера покажем, как с помощью таблицы кубов извлекается кубический корень из 19 683 . Находим число 19 683 в таблице кубов, из нее находим, что это число является кубом числа 27 , следовательно, .


Понятно, что таблицы n -ых степеней очень удобны при извлечении корней. Однако их частенько не оказывается под руками, а их составление требует определенного времени. Более того, часто приходится извлекать корни из чисел, которые не содержатся в соответствующих таблицах. В этих случаях приходится прибегать к другим методам извлечения корней.

Разложение подкоренного числа на простые множители

Достаточно удобным способом, позволяющим провести извлечение корня из натурального числа (если конечно корень извлекается), является разложение подкоренного числа на простые множители. Его суть заключается в следующем : после его достаточно легко представить в виде степени с нужным показателем, что позволяет получить значение корня. Поясним этот момент.

Пусть из натурального числа a извлекается корень n -ой степени, и его значение равно b . В этом случае верно равенство a=b n . Число b как любое натуральное число можно представить в виде произведения всех своих простых множителей p 1 , p 2 , …, p m в виде p 1 ·p 2 ·…·p m , а подкоренное число a в этом случае представляется как (p 1 ·p 2 ·…·p m) n . Так как разложение числа на простые множители единственно, то разложение подкоренного числа a на простые множители будет иметь вид (p 1 ·p 2 ·…·p m) n , что дает возможность вычислить значение корня как .

Заметим, что если разложение на простые множители подкоренного числа a не может быть представлено в виде (p 1 ·p 2 ·…·p m) n , то корень n -ой степени из такого числа a нацело не извлекается.

Разберемся с этим при решении примеров.

Пример.

Извлеките квадратный корень из 144 .

Решение.

Если обратиться к таблице квадратов, данной в предыдущем пункте, то хорошо видно, что 144=12 2 , откуда понятно, что квадратный корень из 144 равен 12 .

Но в свете данного пункта нас интересует, как извлекается корень с помощью разложения подкоренного числа 144 на простые множители. Разберем этот способ решения.

Разложим 144 на простые множители:

То есть, 144=2·2·2·2·3·3 . На основании с полученным разложением можно провести такие преобразования: 144=2·2·2·2·3·3=(2·2) 2 ·3 2 =(2·2·3) 2 =12 2 . Следовательно, .

Используя свойства степени и свойства корней , решение можно было оформить и немного иначе: .

Ответ:

Для закрепления материала рассмотрим решения еще двух примеров.

Пример.

Вычислите значение корня .

Решение.

Разложение на простые множители подкоренного числа 243 имеет вид 243=3 5 . Таким образом, .

Ответ:

Пример.

Является ли значение корня целым числом?

Решение.

Чтобы ответить на этот вопрос, разложим подкоренное число на простые множители и посмотрим, представимо ли оно в виде куба целого числа.

Имеем 285 768=2 3 ·3 6 ·7 2 . Полученное разложение не представляется в виде куба целого числа, так как степень простого множителя 7 не кратна трем. Следовательно, кубический корень из числа 285 768 не извлекается нацело.

Ответ:

Нет.

Извлечение корней из дробных чисел

Пришло время разобраться, как извлекается корень из дробного числа. Пусть дробное подкоренное число записано в виде как p/q . Согласно свойству корня из частного справедливо следующее равенство . Из этого равенства следует правило извлечения корня из дроби : корень из дроби равен частному от деления корня из числителя на корень из знаменателя.

Разберем пример извлечения корня из дроби.

Пример.

Чему равен квадратный корень из обыкновенной дроби 25/169 .

Решение.

По таблице квадратов находим, что квадратный корень из числителя исходной дроби равен 5 , а квадратный корень из знаменателя равен 13 . Тогда . На этом извлечение корня из обыкновенной дроби 25/169 завершено.

Ответ:

Корень из десятичной дроби или смешанного числа извлекается после замены подкоренных чисел обыкновенными дробями.

Пример.

Извлеките кубический корень из десятичной дроби 474,552 .

Решение.

Представим исходную десятичную дробь в виде обыкновенной дроби: 474,552=474552/1000 . Тогда . Осталось извлечь кубические корни, находящиеся в числителе и знаменателе полученной дроби. Так как 474 552=2·2·2·3·3·3·13·13·13= (2·3·13) 3 =78 3 и 1 000=10 3 , то и . Осталось лишь завершить вычисления .

Ответ:

.

Извлечение корня из отрицательного числа

Отдельно стоит остановиться на извлечении корней из отрицательных чисел. При изучении корней мы сказали, что когда показатель корня является нечетным числом, то под знаком корня может находиться отрицательное число. Таким записям мы придали следующий смысл: для отрицательного числа −a и нечетного показателя корня 2·n−1 справедливо . Это равенство дает правило извлечения корней нечетной степени из отрицательных чисел : чтобы извлечь корень из отрицательного числа нужно извлечь корень из противоположного ему положительного числа, и перед полученным результатом поставить знак минус.

Рассмотрим решение примера.

Пример.

Найдите значение корня .

Решение.

Преобразуем исходное выражение, чтобы под знаком корня оказалось положительное число: . Теперь смешанное число заменим обыкновенной дробью: . Применяем правило извлечения корня из обыкновенной дроби: . Осталось вычислить корни в числителе и знаменателе полученной дроби: .

Приведем краткую запись решения: .

Ответ:

.

Порязрядное нахождение значения корня

В общем случае под корнем находится число, которое при помощи разобранных выше приемов не удается представить в виде n -ой степени какого-либо числа. Но при этом бывает необходимость знать значение данного корня, хотя бы с точностью до некоторого знака. В этом случае для извлечения корня можно воспользоваться алгоритмом, который позволяет последовательно получить достаточное количество значений разрядов искомого числа.

На первом шаге данного алгоритма нужно выяснить, каков старший разряд значения корня. Для этого последовательно возводятся в степень n числа 0, 10, 100, … до того момента, когда будет получено число, превосходящее подкоренное число. Тогда число, которое мы возводили в степень n на предыдущем этапе, укажет соответствующий старший разряд.

Для примера рассмотрим этот шаг алгоритма при извлечении квадратного корня из пяти. Берем числа 0, 10, 100, … и возводим их в квадрат, пока не получим число, превосходящее 5 . Имеем 0 2 =0<5 , 10 2 =100>5 , значит, старшим разрядом будет разряд единиц. Значение этого разряда, а также более младших, будет найдено на следующих шагах алгоритма извлечения корня.

Все следующие шаги алгоритма имеют целью последовательное уточнение значения корня за счет того, что находятся значения следующих разрядов искомого значения корня, начиная со старшего и продвигаясь к младшим. К примеру, значение корня на первом шаге получается 2 , на втором – 2,2 , на третьем – 2,23 , и так далее 2,236067977… . Опишем, как происходит нахождение значений разрядов.

Нахождение разрядов проводится за счет перебора их возможных значений 0, 1, 2, …, 9 . При этом параллельно вычисляются n -ые степени соответствующих чисел, и они сравниваются с подкоренным числом. Если на каком-то этапе значение степени превзойдет подкоренное число, то значение разряда, соответствующее предыдущему значению, считается найденным, и производится переход к следующему шагу алгоритма извлечения корня, если же этого не происходит, то значение этого разряда равно 9 .

Поясним эти моменты все на том же примере извлечения квадратного корня из пяти.

Сначала находим значение разряда единиц. Будем перебирать значения 0, 1, 2, …, 9 , вычисляя соответственно 0 2 , 1 2 , …, 9 2 до того момента, пока не получим значение, большее подкоренного числа 5 . Все эти вычисления удобно представлять в виде таблицы:

Так значение разряда единиц равно 2 (так как 2 2 <5 , а 2 3 >5 ). Переходим к нахождению значения разряда десятых. При этом будем возводить в квадрат числа 2,0, 2,1, 2,2, …, 2,9 , сравнивая полученные значения с подкоренным числом 5 :

Так как 2,2 2 <5 , а 2,3 2 >5 , то значение разряда десятых равно 2 . Можно переходить к нахождению значения разряда сотых:

Так найдено следующее значение корня из пяти, оно равно 2,23 . И так можно продолжать дальше находить значения : 2,236, 2,2360, 2,23606, 2,236067, … .

Для закрепления материала разберем извлечение корня с точностью до сотых при помощи рассмотренного алгоритма.

Сначала определяем старший разряд. Для этого возводим в куб числа 0, 10, 100 и т.д. пока не получим число, превосходящее 2 151,186 . Имеем 0 3 =0<2 151,186 , 10 3 =1 000<2151,186 , 100 3 =1 000 000>2 151,186 , таким образом, старшим разрядом является разряд десятков.

Определим его значение.

Так как 10 3 <2 151,186 , а 20 3 >2 151,186 , то значение разряда десятков равно 1 . Переходим к единицам.

Таким образом, значение разряда единиц равно 2 . Переходим к десятым.

Так как даже 12,9 3 меньше подкоренного числа 2 151,186 , то значение разряда десятых равно 9 . Осталось выполнить последний шаг алгоритма, он нам даст значение корня с требуемой точностью.

На этом этапе найдено значение корня с точностью до сотых: .

В заключение этой статьи хочется сказать, что существует масса других способов извлечения корней. Но для большинства задач достаточно тех, которые мы изучили выше.

Список литературы.

  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).